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A New Hybrid-Mixed Composite Laminated 
Curved Beam Element 

Ho Cheol Lee, Jin Gon Kim* 

School of Mechanical &. Automotive Engines}ing, Catholic Umveisity of Daegu, 

Hayang-up, Kyongsan-si, Kyongbuk, 712-702, Korea 

In this study, we piesent a new efficient hybnd-mixed composite laminated curved beam 

element The present element, which is based on the Hellinger-Reissnei vauational principle 

and the first-order shear deformation lamination theory, employs consistent stress parameters 

coriespondmg to cubic displacement polynomials with additional nodeless degrees in order to 

lesolve the numerical difficulties due to the spurious constraints The stress parameters are 

eliminated and the nodeless degrees are condensed out to obtain the (6X6) element stiffness 

matrix The present study also incorporates the straightforwaid prediction of interlaminar 

stiesses from equilibrium equations Scvcial numencal examples confirm the superiot behavior 

of the present composite laminated curved beam element 
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Interlaminar Stresses, First-order Shear Deformation Lamination Theory, 

Stress Parameters, Field Consistency 

1. Introduction 

Fiber-reinforccd composite laminates with high 

specific stiffness and strength are widely used for 

lightweight stiuctures By choosing the fiber ori

entation in each lamina and stacking sequence of 

the layers, a number of desued stiuctural as well 

as thermal characteristics can be designed The 

increasing use of composite materials demands 

clear understanding of their behavior and per

formance under severe operating environments A 

delamination can be caused by the shear stiesses 

between the layers due to the mismatch of mate

rial properties between materials An undeistand-

mg of failure due to delamination is of consi

derable importance in the reliable analysis and 

design of advanced fiber reinforced composite 
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structures 

Beams are the simplest and most commonly 

used stiuctuial elements used in a variety of engi

neering structures The earliest attempts to de

velop a thin cuived beam element based on the 

Kirchhoff-Love theory were not successful when 

C°^continuous tangential and C^-continuous 

noimal displacements aie employed (Ashwell 

and Sabir, 1971 , Dawe, 1974) Some shear flex

ible arch elements based on the Mindlm-Reissner 

theory permit the use of C°-continuous inter

polation functions foi displacements (Nooi et 

a l , 1977 , Noor and Peteis, 1981 , Stolarski and 

Belytschko, 1983) The Mindlin-Reissner theory 

requires a shear conection factor to coriect the 

strain energy of deformation Higher order beam 

theories have been pioposed to model the cross-

sectional waiping and to lemove the shear coi-

rection factor (Stephen and Levinson, 1979 , Le-

vmson, 1981a, Levinson, 1981b, Rychter, 1987, 

Kant and Manjunath, 1989) 

These early attempts were unsuccessful because 

the developed elements aie suffered from an ex

cessive bending stiffness, called membrane lock-
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ing, in ihe limit of inextcnsional bending or 

excessive shearing, called shear locking, in ihe 

thin-beam limit (Dawe, 1974; Noor et al., 1977 : 

Noor and Peters, 1981 : Stolarski and Belytschko. 

1983). To alleviate these numerical difficulties, 

special techniques based on the most popular 

minimum potential energy principle are propos

ed, such as the selective/reduced integration tech

nique (Stolarski and Belytschko, 1982 ; Moon et 

al., 1996), field-consistent clement (Prathap and 

Babu. 1986) and strain-based element (Ryu and 

Sin, 1996), etc. Besides these displacement ele

ments, hybrid-mixed finite elements (Saleeb and 

Chang, 1987; Dorfi and Busby. 1994; Kim and 

Kim, 1998 ; Kim, 2000.) based on the Hellinger-

Reissner variational principle have been shown to 

be quite successful, Among others, Kim and Kim 

(199S) propose a new hybrid-mixed curved beam 

clement, which may be the most accurate locking-

free curved beam element by introducing the 

nodeles.s degrees of freedom and consistent stress 

parameters. 

In this paper, we propose a new hybrid-mixed 

composite laminated curved beam element with 

nodeless degrees of freedoms. The introduction of 

iiodeless degrees makes possible to estimate the 

interhiminar stresses by choosing stress equili

brium equations. The present laminated curved 

beam element is based on the first-order shear 

deformation lamination theory. In many prob

lems, the use of stacking sequences, which do not 

exhibit the transverse deformation to the load 

plane, makes a two dimensional analysis of curv

ed laminated composite beams practically useful. 

For the development of the present hybrid-mixed 

element, the field-consistency concept (Prathap 

and Babu, 1986; Kim and Kim, 1998) is utilized 

to select appropriate stress parameters. At the 

element level, the stress parameters are eliminated 

from Ihe stationary condition and the nodeless 

degrees of freedom are also removed by static 

condensation (Cook et al., 1989) so that a stand

ard six-by-six stiffness matrix is finally obtained. 

The efilcieiicy of the present element can well 

compensate the additional computational effort 

necessary in the element level. The numerical 

results in several test problems confirm the excel

lent performance o( the present element. 

2. Hellinger-Reissner 

Variational Principle 

Fig. 1 shows a two-noded curbed beam element 

\\ith six displacement degrees of freedom. The 

tangential and transverse displacements are de

noted by u and v. the normal rotation. 0. The 

tangential and transverse stress resultants are 

defined as N and V, and the moment resultant. 

M. The corresponding nodal values are subscrib

ed \\ ith 1 and 2. The curved beam element has the 

thickness /). the initial radius of curvature R and 

the length /. 

The Hellinger-Reissner variational principle 

for an element iWashizu. 1982) is expressed 

where 

]V=fipxU+pyVdx 
111 

1=1 

In Eqs. (1) and (2), the generalized stress <7 and 

strain £ vectors are defined as <y=[N. V. Ml 

and £: = [cD. 7o. A"]', respectively. The generalized 

material compliance matrix is denoted by S. The 

kinematic relations and constitutive equations are 

found from the general shell theory by Naahdi 

and Reissner I Saleeb and Chang. 1987): 

_L -L 
1 

M,.0: 

Fig. 1 The aeometrv of a t^\o-noded curved beam 

element 
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£o" 
du 

R R 

_L dd 
R dcp 

(3) 

ro= 
M I 1 dv 

R^R dcp 

wheie <p IS the circumferentia! angle Assuming 

that (y/i?)^<Cl, the normal and shear strain com

ponents £x and jxy for a deep curved beam at a 

distance y from the rcfeience surface can be 

denoted by 

Sx^ 
y/R 

1 + 
R 

y_ 
R- .ea-yn) 

Yxy . -y/R V^ R^ R' 70 

(4a) 

(4b) 

Foi a single ply denoted by k, the stress^stiain 

relations for a two-dimensional beam analysis are 

Txy — CTX ks 1 

-E'xS'x 

Yx 

5a 

(5b) 

where Ex dnd Gx aie the effective elastic mo

dulus and the sheai modulus, respectively, and ks 

IS the shear tacior The thermal and hygrothermal 

effects and the temperatuie variation of the elastic 

constants aie not considered in the present tor-

mulations We can expiess Ex and G* from the 

properties in principal material directions and the 

angle ak between the fibei ducction and the beam 

length axis (Vinson and Sierakowski, 1986) as 

follows 

Ei-- cos ak + 

+ 
s i n * Ok 

E22 

1 2?;i2 \ 2 i 
^ — ^— )cos Qh sm at, 
(j'12 i i i i (6a) 

G^ = Gi3 cos^ (2;,+ G23 sm" ah (6b) 

2 / aibdy 
NL fh^ 

S / liybdy 
NL fh^ 
2 / (}iyb dy (7) 

/ n 0 En 

0 Eli 0 

/ I s 0 E'ii 

{ £(i\ 

\A [A 
--E-6 

where 

r — A +i(k^.f^3. 

; i 3 — ^ " ^ ^ ^ i ^ p 2 / l 3 = - U 2 + 

(8a) 

(8b) 

r2.-fc[s,+-f+(^--^)5: 4 a 4S5 
R^ HT' Rh' R'h^ 

A4 , A 
r 3 3 - A l + ^ I ^ 2 (8d) 

In the above, the coefficients are defined as 

2 
i i=i 

An^llEfib{hl-hl-^)/n {n=\,-,5) (9a) 

NL 

Substituting Eqs (4) and (5) into the equations 

for St:ess lesultanls and integrating the stress 

lesultants ovei the cioss-sectional aiea, then we 

can construct the following matrix form 

Copyright (C) 2005 NuriMedia Co., Ltd. 

B-.^^Gib(M-hU)/n (n=\, . 5) (9b) 
h = \ 

where NL and b denote the number of lamina

tes and the beam width, lespectively The compli

ance mat:IX S needed m Eq (l) can be obtained 

from the inverse of the constitutive matrix E m 

Eq (7) 

The thickness variation of constitutive laws and 

continuity lequirements acioss interfaces make 

the three/tw o-dimcnsional finite element analysis 

very difficult In addition, a large numbei of ele

ments are lequired to gam acceptable levels of 

accuracy particularly with reference to stress con

tinuity requirements at the interface For these 

reasons, Kant and Manjunath (1989) have shown 

that by integrating the two stress equilibrium 

equations of two-dimensional elasticity for each 

layer over the lamina thickness and summing over 

layer 1 to L estimates of interlaminar stresses can 

be obtained as follows 

The diffeiential equations of equilibrium re-

piesentmg the poiniwise equilibiium can be vviit-

ten as 
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r „ = 0 (t,j=x,y) (10) 

Substituting of the lamma stress in Eq (lO) and 

integrating, the interlaminar shear stress can be 

obtained as 

z : ^ U . i = - 2 ] r " ' - ^ « ' . y + C i (11) 
L k=lJht OX 

Substituting the lamina stress m Eq (lO) and 

eliminating interlaminar shear stress, the follow

ing second order differential equation is obtained 

c/^Ox cf^Oy 

dx' dy' 
(12) 

The integration of Eq (12) yields the following 

interlaminar noimal stress as 

ail^,.i = - t ["^1 f^dy)dy+yC2+a Hi) 

The constants of integration are so determined to 

sastisfy the conditions for Oy and txy on z = ± / i / 2 

(Pagano, 1969) In view of availability of only a 

single constant, the interlaminar shear stress esti

mate may not m general satisfy beam boundary 

conditions at the boundary surfaces In case of 

interlaminar normal stress, this problem does not 

arise, because here two constants of integration 

obtained by integrating twice can be determined 

by substituting two boundary conditions at z— 

±h/2 Eq (13) is solved as a boundary value 

problem, but this requires use of at least a cubic 

element, so that the third derivatives of displace

ments can be determined Present element satisfy 

this requirement 

3. Field Assumption 

For the present hybrid^mixed two-noded cubic 
element, we propose to use bubble functions such 
as f (l—1^) and f^(l—f) in addition to the usual 
linear interpolation functions for displacements 
Using the dimensionless co-ordinate ^=(pjq>a 

(0<if < l ) , the following displacement inJeipola-
tion IS considered 

M=( l - | )Ml + fM2 + | ( l - | ) & + ^ ' ( l - ^ ) a 2 

( ^ = ( l - | ) f i + ^ t e + f ( l - e ) 6 i + l ' ( l - a & (i4) 

^ = ( l - a f t + f & + ^ ( ! - f ) c i + f n i - f ) c 2 

one may put equation (14) m compact form 

u = [ N , Nb] ' =N-d (15) 

where d i = { « i , •••&}* are the nodeless degiees 

of freedom which are associated with significant 

deformation at ^ = 1 / 2 with vanishing deforma

tion at nodes, ^ = 0 and 1 The conventional no

dal displacement components are defined by cle= 

{Ml. •••, &} ' 

To select appropriate stress interpolation func

tions needed m the hybrid-mixed formulation, the 

limiting behavior of strains should be examined 

As the beam becomes extremely thm and nearly 

straight, 1 e , (i? —• c»), the shear strain must 

vanish 

' - ^ - ^ - » (16) 

Examining equation (16), one sees that four 

constraints including Cj—*0 are imposed as the 

shear strain 70 approaches zero In particular, the 

constraint of vanishing Cz yields the unnecessary 

constraint expressed by ,̂f je ^ 0 m the element 

region (Prathap, 1993) Similarly m ihi^ limit of 

mextensional bending, we can find one spurious 

constraint of vanishing bi by examining the limi

ting behavior of 

£o=W,$+- 7? • 0 (17) 

Obviously, the consequence of the constraint on 

&2 is that the term y,##s vanishes m the element 

level To overcome these spurious constraints, 

which lead to locking phenomena and stress os

cillations oyer the element, the quadratic stress 

functions should be adopted as 

(If 

where 

and 

/9=(/?i /?2- ^^^^Y' 

P = 
1 0 0 ^ 0 0 1 ' 0 0 
O l O O f O 0 1^0 
0 0 1 0 0 f 0 0 1= 

(19) 

(20) 
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These consistent stress paiameters can be recon

firmed by the matcliing requirement of stress-

displacement fields (Plan and Chen, 1983), Dim 

(jS) >Dim(u) - f/ie numbei of rigid-body de

grees of freedoms, namely Dim(j3) > 12 —3=9 

The present consistent higher-order hybiid-mix-

ed curved composite beam element based on Eqs 

(15) and (18) will be designated by CDCSQ2 

This element will be compared with 2-nodcd 

hybrid-mixed element designated by CDQSL2, 

which has consistent quadratic displacement-lin

ear stress approximation 

4. Finite Element Formulation 

For the finite element formulation, Eqs (l5) 

and (iS) are substituted into Eq (l) to yield 

n ^ = ; 9 * G d - y ^ ' H ; 9 - d ^ < t ) - Q ' d (21) 

where 

H = ^ P ' S P ^ : r (22) 

G^ JV'^ dx = jrV&c B*]rfjt:=[Gc G.] (23) 

(i>=jm[px,py.O]dx (24) 

Here, the matrix G is expiessed in terms of the 

stiam-displacement matrix Be and Bb which cor

respond to the nodal and nodeiess displacement 

components, respectively, and (J) is the consistent 

load vector due to surface tractions The applied 

nodal force vector is also denoted by Q 

Invoking the stationarity of the functional with 

respect to d and y3 gives 

{25a) G*;S = Q + (f 

H'jS=Gd {25b) 

The elimination of ^ in Eq (25) in the element 

level yields the following form of equations 

K „ K, 

0 J 
(26) 

Since the nodeiess variables d* are designed not 

to carry diiy load, d* can be eliminated in the 

element level by the condtns'dtion of Eq (26) 

dk=-K6lKbcdc (28) 

The substitution of Eq (28) into the first set of 

equations in Eq (26) results in 

K^-dc=Q+(l) 

K'^Kcc-Kc^KzlK,, 

(29a) 

(29b) 

This element stiffness matrix K^ of a CDCSQ2 

element can now be treated easily for the assem

bly and subsequent analysis If the constant stress 

and linear displacement field is employed without 

the use of nodeiess variables, the resulting stiff

ness, which IS equal to Kcc, reduces exactly to 

the stiffness matrix of a CDQSL2 element and 

Dorfi's Pl-type element (Dorfi and Busby, 1994) 

5. Numerical Examples 

In this section, we evaluate the numerical per

formance of the present finite element for the 

several problems The present lesults are com

pared with those reported by existing analytical 

and/or numerical lesults 

5,1 Composite cantilever beam bending 

To show whether the present element exhibits 

locking problem for thin beam, a thm composite 

cantilever beam under the tip load P at the free 

end IS consideied since its analytical solution is 

well known Material and geometric data are 

given in Table 1 (Vinson and Sjeiakowski, 1994) 

Using the Timoshenko beam theory applied to 

laminated composites, the tip defiection is given 

by 

V theory ^^'-i-iUHifM 
and 

n= 
A, 

i\.bc i^bb] Id* 

where the element substiffncss matrices Ku are 

K „ = G ^ H - U iiaMj^cb) (27) 
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2 ( A i A - A I ) n= 
1 

K{B^-a,Bilh^) 

where L is the length of the beam, k the thickness 

of the beam, ks the shear factor and (A\, A-i, A-i, 

Bu Bi) aie defined by Eq (9) 
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Table 1 Mciieiial and tjeometric data of a straight 
beam 

Material (Kevlar epoxy) 

E l l 

E22 

G 1 1 = G 1 3 = G 2 3 

Wiz 

76GPa 

5.5 GPa 

2.3 GPa 

0.34 

Geometry 

Stacking sequence 

Beam length 

Beam height 

Beam width 

Tip transverse load 

[90/45/-45/45/-45/0]s 

O..Sm 

12 mm 

20 mm 

1 N 

Table 2 Material and geometric data of a pinched 
ring 

Material ' 

£ i i 

E-r, 

Gl2^CriS—G23 

ri2 

graph ite 

Geometry 

Stacking sequence 

Radius R 

Beam height /; 

Beam width b 

Shear factor ^5 

epo.xy 

289 GPa 

6.06 GPa 

4.13 GPa 

0.31 

[90/45/-45/45,-45]s 

0.1 m 

20 mm 

20 mm 

1.2 

1.1 

1-0-

O D.9 
E 

a 
3 a.7 
Q 

"S 0,6-

1 0.5-

o 
2 O-l 

0-3 

I « « * 

Theory 
CDLSC2 
CDCSQ2(presenl) 

3 ^ 5 6 7 

Number of Elements 

Fig. 2 Convergence behavior of the normalized dis
placement at the loaded point in the straight 
cantilever beam 

Figure 2 shows the convergence behavior for 

the normalized tip deflection at the free edge. It is 

clear thai the CDCSQ2 element shows more ra

pid convergence than the CDQSL2 element. The 

CDCSQ2 clement requires some additional cal

culations to obtain KcbliJlKbc in Eq. (29b) for 

each element. Regardless of the additional com

putational elTort needed for CDCSQ2. CDCSQ2 

with the additional nodeless degrees is more 

effective than CDQSL2. 

5.2 Composite pinched ring 

Figtire 3 shows a composite pinched ring with 

a radius of 0,1 m and thickness of 0.02 m {R/li = 

5) subjected to compressive point loads in radial 

direction. A pinched ring serves as the best illus-

Fig. 3 Composite ring under compressive point load 

tration to evaluate the element behavior in a deep 

arch problem. The quadrant from A to B of the 

ring is modeled because of the double symmetr\. 

Material and geometric data are given in Table 2 

(Vinson and Sierakowski, 1994 , 

The convergence behavior of present element 

is demonstrated in Fig. 4. It is seen that the 

CDCSQ2 element gives more rapidK converging 

results than the CDQSL2 element without no

deless degrees. To compare the performance of 

CDCSQ2 and CDQL2 in the stress prediction, the 

normal force distributions obtained from the var

ious subdivision are plotted in Fig. 5. The accu

rate prediction of the generalized stresses is verv" 

important for the subsequent calculation of the 

interlaminar stresses to cause a delamtnation. We 

can see that the two element idealization with 

CDCSQ2 yields the results excellently agreeing 

Copyright (C) 2005 NuriMedia Co., Ltd. 
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| o . 

• : ' ' ' 
A 

— Theory 
* CDQSC2 
• CDCSQ2(present) 

Number of Elements 

Fig. 4 Convergence of the normalized radiitl dis

placement at the loaded point in tlic pinched 

ting shown in Fig, 3 

Table 3 Material data of a simply-supported beam 

Material (graphite/epoxy) 

E, 

KT 

GLT 

GTT 

VLT^^ UTT 

25,000 ksi 

1,000 ksi 

500 ksi 

200 ksi 

0.25 

Th/2 
XW2 

Fig, 

0 1 0 .'PO 3D 4Q 50 BO 70 BQ 90 

Angle [degree] 

5 Normal force approximation of the composite 

pinched ring 

with the exact theoretical normal force distributi

on A ' '=—_Ps in <p. 

5.3 Simply supported beam under s inusoidal 

t r a n s v e r s e load 

Figure 6 .sliows a s i tnply-supported bcatn under 

siniLsoidal lransver.se loati py^J}oS'm{7rx/L). In 

order lo compare (he present result with those by 

the elasticity theory and the classical laminated 

plate theory (CPT) given by Pagano (1969), we 

consider layers of square symmeiric unidirec

tional fibrous composite material possessing the 

following stiffness properties in Table 3, which 

simulate a high modulus graphi te /epoxy compo

site. Subscripts L and T denote the direction 

parallel lo the fibers and the transverse direction, 

respectively. The geometrical conftguralion is a 

symmeiric 3-ply laminate with layers of ec]ual 

Fig. 6 Simply-supported beam under sinusoidal 

transverse load 

(15 -

US -

• 2 -

Q1 • 

0 

•0 . : -

"D.3-

-DA -

-u & -

"-- --".r̂ — _̂̂  

r ,{li.y) 

/•'•^ 

0 Q5 10 

_ _ * - - - - ' " ^ — - - • " 

Elastic it V 

- - . * ^ " -̂  CRT 

. • " ' • * " ' - • ' 

1 

;• 
15 \ 2. 

CDGSa2(present ) 

Fig. 7 Thickness vs interlaminar .shear stress 

thickness - the L direction coincides with x in the 

outer layers, while T i s parallel to .r in the central 

layer. A shear correction factor of 1.2 and a s p a n -

to-dep th ratio of 4 are used in this study. 

The distr ibutions of the normalized interla

minar shear stress TJ,. and the normalized in-

plane stress dx are shown in Fig. 7 and Fig. 8, 

respectively. The present results for fxy and dx 

substantially agree with the C P T solution by 

Pagano. Finally, the distribution of the norma-

lized interlaminar normal stress dy is shown in 

Fig. 9. The distribution of interlaminar normal 

stress integrating twice the second derivatives of 

Ox slightly underestimates the value compared to 

Copyright (C) 2005 NuriMedia Co., Ltd. 
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05 
Elasticity 
CPT o-J 

CDCSQ2( | j resen t ) ^^ 

. , - 0 , 2 

0 T 

15 - ID -5 0 

-0.1 

-0.2 

. * , ^ - ^ ' - 0 3 

J ^ * " ' ' 

• -as 

-

^ 

^ n 

1 

5 

~i^ 

" ^ - - - " • 

*.''' 

fT • - - • 

IQ 15 20 

Fig. 8 Tliickness vs in-plane Mress 

y 
D 5 -, 

0.4 

0 3 

Q 2 

0.1 

D.O 

-0 1 

-0 2 

-0.3 

-0.4 

- Elasticity 
CPT 
CDCsa2(present) 

// 

'/y 

// 

"T "T " 
0 2 0.J-, 0.8 1 0 

a..{i : , y ) 

Fig. 9 Thickness vs inlcrlaminar normal stress 

the elasticity solution near the top surface of the 

beam. AUhough additional computational efforts 

on the element level are necessary in the present 

element CDCSQ2, this is well compensated by the 

increased accuracy and the practical prediction of 

the interlaminar stresses. 

6. Conclusions 

In this work, we propose a new highly accurate 

hybrid-mixed laminated curved beam element in

troducing the nodcless degrees, which can handle 

the prediction of interlaminar stress by choosing 

stress equilibrium equations. The present lami

nated curved beam element, which is based on the 

Hellinger-Reissner variational principle and the 

first-order shear deformation lamination theory, 

employs consistent stress parameters correspond-

Copyright (C) 2005 NurilVledia Co., Ltd. 

ing to cubic displacement polynomials to resolve 

the numerical difriculties due to the spurious 

constraints and impro\e the accuracy. The stress 

parameters are eliminated and the nodeless de

grees are condensed out to obtain the con\en-

tional element stifTness mairi.x. Several numerical 

examples confirm the accuracy and etTiciency ot 

the present hybrid-mixed laminated curved beam 

element. 
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